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Modern numerical techniques employing properties of flux Jacobian matrices are extended 
to general, nonequilibrium flows. Generalizations of the Beam-Warming scheme, Steger- 
Warming, and van Leer flux-vector splittings, and Roe’s approximate Riemann solver are 
presented for 3-dimensional, time-varying grids. The analysis is based on a thermodynamic 
model that includes the most general thermal and chemical nonequilibrium flow of an 
arbitrary gas. Various special cases are also discussed. 0 1989 Academic Press, Inc. 

INTRODUCTION 

The design of the next generation of advanced space transportation systems such 
as the National Aerospace Plane (NASP) and the Aeroassisted Orbital Transfer 
Vehicle (AOTV) requires detailed flow computations. The combination of high 
speed and low density result in the departure of air from a perfect gas due to the 
excitation of internal modes, dissociation, and ionization. At sufficiently low 
altitudes (i.e., suffkiently high density), the rate of collisions between particles is 
high enough so that all these processes are at equilibrium with their respective 
reverse processes. The only modification in the formulation of the equations is the 
replacement of the perfect gas law by a general, equilibrium gas law [l]. The 
corresponding extensions of the numerical algorithms are found in Ref. [2]. There 
is a significant altitude (i.e., density) range in which the mean free path between 
collisions is sufficiently small for the continuum approximation to be valid, but the 
collision rate is not large enough to maintain thermal or chemical equilibrium. This 
series of papers is devoted to the numerical computation of general, nonequilibrium 
flows. 

Most modern techniques used in CFD utilize the properties of flux Jacobian 
matrices for the treatment of the inviscid terms in the numerical solution of conser- 
vation laws. For central difference methods, the Beam-Warming scheme [3] 
requires the true flux Jacobian matrices, and their eigenvalues and eigenvectors are 
needed for the diagonal algorithms [4]. Most upwind methods, such as the 
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Steger-Warming flux-vector splitting [S], the van Leer flux-vector splitting [6], 
and the Roe approximate Riemann solver [7], all utilize the properties of the flux 
Jacobian matrix. Their original derivations relied on the algebraic simplicity of the 
perfect gas law. The purpose of this paper is to extend these methods to non- 
equilibrium flows. Only those aspects of the schemes affected by the nonequilibrium 
assumption are covered. Other investigations [S-lo] have been limited to the 
treatment of flux Jacobian matrices for chemical nonequilibrium. 

We first discuss the thermodynamic model as it relates to the formulation of the 
inviscid flux. It is general enough to include any type of nonequilibrium flow in an 
arbitrary gas. The exact flux Jacobian matrices, their eigenvalues, and eigenvectors 
are then presented. This is followed by the generalizations of Steger-Warming and 
van Leer flux-vector splittings, and the generalization of the Roe average used in 
Roe’s approximate Riemann solver. Finally, we discuss the formulations for several 
special cases including different treatments of thermal nonequilibrium and 
chemical nonequilibrium. The analyses are presented for 3-dimensional flow with 
time-varying grids. 

THERMODYNAMIC MODEL 

We consider a gas of mixture of chemical species which may include neutral or 
ionized atoms or molecules, or free electrons. For each species, statistical mechanics 
provides the molecular basis for deriving the macroscopic equations of state, which 
relate the internal energy and pressure to the density and possibly several 
temperatures. To form the fundamental variable, the partition function, one first 
requires the quantized energy levels and degeneracies derived from quantum 
mechanics. These are given in principle by the eigenvalues of the Schrodinger 
equation. In practice, they can only be determined approximately under some 
assumptions, and with the aid of experimental data. 

A given energy level can be characterized by different types of degrees of freedom. 
Free electrons only have translational degrees of freedom. Atoms also possess elec- 
tronic and nuclear degrees of freedom. Molecules have additionally vibrational and 
rotational degrees of freedom. A thermodynamic model is based on the splitting of 
the energy level into several microscopic modes, each characterized by one or more 
types of degrees of freedom. The physical conditions determine the extent to which 
such a splitting is valid. The macroscopic properties also require the distribution of 
the species over the energy levels. This is given by the Maxwell-Boltzmann distribu- 
tion characterized by a single temperature if the system is in thermodynamic equi- 
librium. (Note that we do not attempt to deal with quantum statistics here.) The 
phenomena we are studying involve thermal and chemical nonequilibrium processes 
which are not strictly describable by equilibrium statistical mechanics. Nevertheless, 
these phenomena ordinarily involve systems in what is called local equilibrium. This 
means we assume that at any instant, in the neighborhood of any point in space, 
the energy level can be expressed as a sum of independent energy modes, where the 
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distribution of species over each mode can be approximated by a Maxwell- 
Boltzmann distribution corresponding to some temperature defined for that mode. 

For most gasdynamic applications, the nuclear state is rarely altered. Thus, we 
shall not consider any contribution to the internal energy from the nuclear degrees 
of freedom in our model. Under most conditions, we can also assume that the gas 
mixture consists of weakly interacting particles. The splitting of each energy level 
into a translational mode and an internal structure mode is then completely 
appropriate. From a macroscopic point of view, this is equivalent to stating that the 
species internal energy per unit mass E, is the sum of the average translational 
energy of random thermal motion, e$an, and the average energy of the internal 
structure, l ?. Here the subscript s denotes any particular species in the mixture, 
whether it is a neutral or ionized atom or molecule, or a free electron. A superscript 
denotes a macroscopic mode of energy. This splitting leads to the thermally perfect 
gas law for each species. Specifically, the translational energy is proportional to the 
translational temperature T,, and is given by 

E? = ;R, T,, (1) 

where R, = R/QS, 8 is the universal gas constant, and fiS is the molar mass of 
species s. Also, the species pressure ps is given by 

ps= psR,Ts, (2) 

where the species density pS is the mass of species s per unit volume. 
At this stage, l ” consists of the internal energy from electronic excitation for 

atoms, and the combined energy of vibration, rotation, and electronic excitation for 
molecules. To a somewhat poorer approximation, E? for molecules can be split 
into the electronic excitation energy and the combined energy of vibration and 
rotation. In a further approximation, the latter can be split into separate vibrational 
and rotational energies. This leads to the rigid-rotator, harmonic-oscillator model 
and other models with anharmonic corrections. Each macroscopic energy, mode 
may be characterized by a separate temperature or several modes that are 
approximately in equilibrium with each other could be characterized by a common 
temperature. One may consult the book by Herzberg [ll] or other textbooks on 
statistical mechanics for the calculation of the internal energy for each mode. It is 
important to point out that the splitting of E: for molecules into separate macro- 
scopic modes cannot be justified at higher temperatures. Rotation produces a 
centrifugal force that affects the vibration, while vibration changes the moment of 
inertia that affects the rotation. The centrifugal force and the vibrational frequency 
also vary, with the electronic state because of different electronic configurations. 
Thus, the splitting may cause very large errors in calculating the internal energy at 
very high temperatures [12]. Recently, Jaffe [13] has proposed a more rigorous 
equilibrium thermodynamic model for diatomic molecules. In his model, for each 
electronic state, and a given rotational quantum number, one determines an 
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effective intermolecular potential from which one calculates the allowed energy 
levels below the potential barrier. The maximum rotational quantum number for 
each electronic state is that for which the effective intermolecular potential first 
becomes completely repulsive. E:~ is obtained by summing over these electronic- 
rotational-vibrational energy levels for all allowed vibrational and rotational 
quantum numbers and over all known electronic states. We have modified his 
model for obtaining the energy levels and have written a general computer program 
for computing the internal energy [ 1,121. Internal energies for many species, based 
on a simpler thermodynamic model, have been tabulated in the JANAF tables [ 143 
for temperature below 6000 K. While their results are in agreement with ours in 
this temperature range, the use of the JANAF model would result in significant 
differences with our calculations at higher temperatures. Although the code 
operates at a speed of 170 Mflops on a CRAY 2 computer, the computation is 
rather tedious and cumbersome, and it may involve summing over 20,000 to more 
than 50,000 energy levels for each diatomic species. Thus, for practical purposes, we 
also provide vectorizable, linear search, cubic spline interpolations. Typically, for 
interpolations from a data base of 100 K intervals, the maximum error is less than 
0.001% for all the air species except 0 and N+, for which the maximum error is 
less than 0.01% [12]. Jaffe [13] has also proposed a nonequilibrium thermo- 
dynamic model in which the electronic-rotational-vibrational energy level is split 
into an electronic mode, a rotational mode, a vibrational mode, and an interaction 
mode. The electronic and vibrational modes are characterized by a vibrational 
temperature, the rotational mode is characterized by a rotational temperature, and 
the interaction mode can be characterized by either the vibrational or rotational 
temperature. Because of the strong interaction between modes, we believe that this 
energy level should not be split, but should be characterized by a single internal 
mode temperature for each species. 

In addition to enabling us to determine accurate species internal energies, the 
thermodynamic model is also needed to determine the rates of energy transfer 
between different modes, as well as chemical rate constants and transport coef- 
ficients. The choice of an appropriate model is therefore a difficult problem. In this 
paper, we do not attempt to judge which model should be used. Instead we 
formulate our algorithms as generally as possible so that they could include all 
possible models, including those that we question. 

We restrict our analysis to mixtures of chemical species in which all the heavy 
particles (i.e., atoms and molecules) are close enough in mass that their trans- 
lational energies can always be characterized by a single translational temperature 
T. Since the mass of the electron is so much smaller than those of the heavy 
particles, the translational energy of free electrons could be characterized by a 
separate electron temperature T,. When this occurs, we will use the subscript s’ to 
denote any heavy particle, and the subscript e to denote the free electron. With this 
notation we can write 

(3) 



NONEQUILIBRIUM FLOW COMPUTATIONS 377 

for all s’. Under our assumption of a mixture of thermally perfect gases, the 
pressure p is given as 

P=C P,~R,.T+P,R,T,. (4) 

We note that the thermally perfect gas assumption may break down at sufficiently 
high temperatures due to the large orbits associated with high electronic states, or 
at sufficiently high densities. The assumption is also not strictly true for the charged 
species, due to the long range nature of the electric field. 

Under the assumptions of our model, E, can in general be expressed as 

(5) 

Here E: is defined to be the sum of E? and the part of E? that can be charac- 
terized by the translational temperature T. E: is the part of E? that can be charac- 
terized by the electron temperature T,. l t is the remaining part of E”’ not in equi- 
librium with either T or T,. In practice, l f is characterized by a temperature Ti, or 
possibly several such temperatures. Note the distinction between l j and l $an, and 
also E: and E?. In order to obtain simple additive relations for the internal energies 
of the mixture (see Eqs. (8) and (9)), we have included the energy of formation from 
a set of elemental species in the definition of E:. Also, the arbitrary constant in 
the definition of E, must be determined in terms of the constants chosen for the 
elemental species. For the free electron, we obtain simply 

++() and ee, = ;R, T,. (6) 

For the heavy particles, the exact division of the energies in Eq. (5) depends on the 
choice of models. For example, E:. could be the energy of the bound electrons, and 
I$ the energy in the vibrational modes, while the energy in the rotational mode 
would be included in l f. . The three temperature model used by Park [ 151 and Lee 
[ 163 is one such example, where they considered the special case in which the 
vibrational energy of all the diatomic species are characterized by the same vibra- 
tional temperature. The model used by Candler and MacCormack [17] is another 
special case in which E:. = 0 for all species, of. = 0 for the monatomic species, and 
ef, for the diatomic species contains the vibrational energy of the ground state only. 
At higher temperatures, where the splitting of E:’ into separate modes is not 
justified, we believe the appropriate model is E:. = 0 and l :, = I$. Another possible 
model would have all the internal energy characterized by T or T,, so that ef = 0. 

FLUX JACOBIAN MATRICES FOR A NONEQUILIBRIUM GAS 

To formulate a complere set of conservation equations for a multi-temperature, 
multi-component gas mixture in a thermo-chemical nonequilibrium environment is 
a nontrivial task. It requires knowledge in advanced kinetic theory and quantum 
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mechanics. The main difficulty comes from the fact that the gas does not consist of 
structureless particles. Also, as the temperature gets higher, the upper excited elec- 
tronic states become populated and some atoms and molecules become ionized. 
Additional complexity arises since the particles now interact with each other due to 
long range forces. This can have an important influence on transport, relaxation, 
radiation, and chemical-reaction processes. Many existing theoretical approaches 
have neglected this effect or have limited it to a certain degree of complexity. 
Further research and development is required for more rigorous formulations. 
Under some condition the ionized gas cannot be treated as electrically neutral. This 
give rise to induced electric fields and additional source terms in the momentum 
and energy equations. A rigorous formulation would require the addition of 
Maxwell’s equations to our system. Instead of dealing with all these complications, 
in this paper we just focus on some numerical aspects of the inviscid flux terms. 
None of the transport, energy transfer, chemical source, or radiation terms will be 
discussed here. 

The variables defining the state of the gas motion are the mass averaged mixture 
velocity u, the temperatures T and T,, and for each chemical species the density p3 
and ef. (or Tf,). In order to formulate the conservation equations, it is convenient 
to introduce the internal energy of species s per unit volume 

8, = PsEs, (7) 

with analogous definitions for I:, , IE:, and If,. Summing over all species, one can 
express the internal energy of the mixture per unit volume as 

where 

and 

If all the ps are known, T and T, can be obtained from Z’ and P, although this will 
involve an iterative process if all the E:. or E: are not linear functions of T or T,, 
respectively. It is also convenient to introduce the overall density of the mixture p, 
given by 

P’C PST 

s 

(10) 
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and the species mass fraction tl,, defined as 

as = PslP. (11) 

Using Eqs. (10) and (ll), one can also define the part of the internal energy in 
equilibrium with T, per unit mass of the mixture as 

and for each species the nonequilibrium part of the species internal energy per unit 
mass of the mixture as 

I’. 
E~,ES=~,.E~.. (12b) 

P 

Note the distinction between cf. and l i,. The enthalpy per unit mass of the mixture 
is then given by 

I+p 
h=- 

P 
(134 

= ; a,,[~~,( T) + R,. T] + a, R, T, + 6 + 1 E:,. 
s’ 

(13b) 

In order to obtain maximum generality and greater compactness, we employ the 
vector approach of Ref. [18]. The set of conservative variables per unit volume U 
can be represented compactly by the algebraic column vector 

PS 
m 

U= [1 e , (14) 
q* 
-f? E 

where m = pu is the momentum of the mixture per unit volume, and e = e + $pu. u 
is the total energy of the mixture per unit volume. Here ps and Pf. contain NS and 
NZ elements respectively, where NS is total number of chemical species, and NZ is 
total numer of energy modes which are not characterized by T and T, in the 
mixture. Note that m is a physical vector, while both e and I’ are scalars. 

The calculation of the flux of U across a surface element plays a central role in 
the numerical solution of conservation laws. Let n be the unit normal vector in a 
positive direction to a cell surface in a finite-volume grid, or a coordinate surface 
in a finite-difference grid. If u, is the normal component of the velocity of a 
time-varying surface, and u, = n . u, we can define the normal relative velocity com- 
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ponent 24’ = u, - v,. The set of inviscid normal flux components per unit area F,, is 
given by the algebraic column vector 

F,,= 

PSU’ 
mu’+pn 

[ 1 eu’+ pu, , 

e;. li 

I%’ 

(15) 

where A4, P, and E denote the normal flux of mass, momentum and energy. Note 
that the above equations do not include the kinetic energy of the free electrons in 
the last row of U, or the electron pressure pe in the corresponding row of F,. If 
these terms were included, the equation set would have to be augmented by the 
momentum equation for the free electrons. In addition to increasing the number of 
equations, it would require modeling the momentum transfer between the free elec- 
trons and the heavy particles. But to avoid the additional complications arising 
from the introduction of Maxwell’s equations, an approximate form of the electron 
momentum equation is normally used to obtain the induced electric field 
[ 19, 15-171. This results in the presence of the gradient of pe in the source term for 
the electron energy, as well as the overall momentum and total energy equations. 
By excluding the electron kinetic energy and electron pressure from our electron 
energy equation, we must add an additional term involving pe to its source term. 
The effect of the presence of pe in the source terms on shock-capturing capabilities 
remains to be investigated. 

We can define a flux Jacobian matrix operator A satisfying dF, = A dU, using the 
convention that in forming the product of a matrix element with a column vector 
element, a dot product is implied if each element is either a physical vector (e.g., u 
or n) or a tensor (e.g., un or nu). The differential of Eq. (4) takes the form 

dp = c R,, T dp,, + R, T, dp, + 1 psp R,. dT + p, R, dT,. 
s’ s’ 

The species specific heats are defined by 

(16) 

and 

(17b) 

Using Eq. (17), one can rewrite Eq. (16) in terms of the differentials of internal 
energy per unit volume as 

dp=cx,dp,+Kd~‘+K’d~‘, (1’3) 
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where the pressure derivatives are defined as 

and 

xe E R, T, - r&z = R, T,( 1 - $K=). (2Ob) 

Equations (4) and (20) can be combined to derive the identity 

p = 1 p,x, + leer + Kele. 

Introducing the set of differentials of U, we obtain the final form 

dp=;(;-+xs) dp,-Ku.dm+xde-rcxdZf.+(rc’-k-)dZ 
3’ 

Using Eq. (22), the matrix A can then be written as 

6~4’ - asun a9 0 0 0 

A= 

(194 

(19b) 

(204 

(21) 

(Fueu+Xr)n-u,u un-mu+u’I icn --Kn (ice-tc)n 

Hn - KU,U uu, + u’ -uu, (ff - u) 24, 

- E;. U, k$.n 0 6,.,f u’ 0 
- &%, E% 0 0 U’ 

(22) 

a 

(23) 

where H= h + fu . u is the total enthalpy per unit mass of the mixture, I is the 
identity tensor, and 6,,, 6,., are Kronecker deltas. The subscripts s and I are row 
and column indices, respectively. One can easily verify the homogeneity property 

AU= F,,, (24) 

which is the direct consequence of the assumption of a mixture of thermally perfect 
gases leading to the form of Eq. (4). 
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A has the three distinct eigenvalues 

1, = u’, A, = u’ + c, II, = 24’ - c, (25) 

where c is the frozen speed of sound given by 

C*=Ca,X,+Kh+(ICe--)&e--K.C~, 
s s’ 

=(lc+ 1);. 

GW 

Wb) 

The second form is obtained using Eq. (21). Note that the number of distinct eigen- 
values is unaffected by the number of species and the number of nonequilibrium 
energy modes in the system. A, is associated with those conservative variables 
whose flux is purely convective. These are the three types of nonequilibrium 
variables pS, I$, and Z’, and the tangential component of m. Since A, is a repeated 
eigenvalue, if a diagonal algorithm is applied, the inversion associated with this 
eigenvalue can be performed simultaneously. This demonstrates one of the advan- 
tages of the diagonal algorithms, since one only needs to solve three different scalar 
equations in each direction whether the gas is perfect, or in thermodynamic equi- 
librium, or in thermo-chemical nonequilibrium. 

In order to construct the four types of linearly independent eigenvectors 
associated with il,, we span the plane normal to n by an arbitrary set of two basis 
vectors bi, and the set of reciprocal basis vector bj, satisfying bi. W= S{, where S{ 
is the Kronecker delta. It follows that bj. n = I$. n = 0. One can then obtain the 
similarity transformation A = RAR-', with the diagonal eigenvalue matrix A 
defined as 

The right eigenvector matrix R can then be written as 

R= 

6 0 0 0 ’ ST a, a, 
U cbi 0 0 u+cn u-cn 

&I-~ c(u.bi) 1 1-c H+cu, H-CM, 
K 

0 0 d,.,. 0 i ES, i ES, 
0 0 0 1 Ee 6 I 

(27) 

, (28) 
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while the left eigenvector matrix R-’ can be written as 

R-‘= 

1 
7 

e26,r-a,(~u~u+x,) a,Icu -a,ic a,K -a,(Ke--x)’ 

-c(b’.u) 

+.U+*.) .‘I -I:,. c’6.~r:+~;fu -.:,(:+) 

-E$U.u+x,) E%U --EelC EeK c2 - Ee( Ice - u; 

1 K 
2 p.u+~,-cu, 

( > 
i(cn-tcu) TIC -TIC ; (d-K) 

-;(C”+KU) ;K - ;K ; (Ke- K) 

1 

(29) 
In actual computations, since the eigenvector matrices are used to operate on 
algebraic vectors or matrices, one probably never needs to form them. By inspecting 
the structure of R-‘, it is more efficient to express it in a different manner. Equation 
(22) can be expressed compactly as dp = PT dU in terms of the row vector 

-KU K -K Ke-K . 1 
Then R- ’ can be partitioned as 

R-l =’ 
C2 

-4 
0 

--EL. 

-Ee 

1 
PT+t 

2 

1 
2 

- cd*, 0 0 0 0 
-b’.u b’ 0 0 0 

0 0 0 cs,.,. 0 

0 0 0 0 c 

UPI n 
-- 

2 2 
0 0 0 

% 3 -50 0 0 

(30) 

(31) 

When carrying out the implicit inversions in a diagonal algorithm or forming the 
limiters in some TVD schemes, one needs to perform the operations R-‘V and 
RW, where V and W are some algebraic column vectors of appropriate structure. 
Let 
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v= 

Uls 
“2 

[I 03 

v4s* 

v5 

(32) 

be a live-component algebraic column vector with the structure of U or F,,. In 
terms of the scalar quantities 

v1= c Uls, 
s 

v,=cv4s,, 

Wa) 

Wb) 

PTV 
v6=--7 

=;[CXsvls+n(~ (u~u)v,-u~“2+u,-u4 

> 

+(KyK)lQ ) 1 (33c) 

and 

VT =; (11 . “2 - U,Ul), 

one can calculate R - ’ V efficiently as 

R-‘l/c 

01s -asv6 - 

; [b’ .vz-(w.u)vl] 

04s. - &f45 
UC, - f-06 

;(“6+v7) 

3(“6-v7) 

Wd) 

(34) 

Note that each additional species s involves only an additional add in forming ui, 
an additional add and multiply in forming v6, and an additional add and multiply 
in forming the first component of R-‘V. Similarly, each additional species s’ that 
contains Et. involves only an additional add in forming u4 and an additional add 
and multiply in forming the third component of R-l V. Thus the addition of new 
species to the system involves very few additional operations. 
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Let 

(351 

be any six-component algebraic column vector with structure of R-‘V, In terms of 
the scalar quantities 

Wl = c Wls, Wa) 

w3=cw3d, 
s’ 

w7=wj+w6, 

Wb) 

(36~) 

and 

w*=wg-W6, WI 

one can calculate R W efficiently as 

RW= ~u+~~n,w13+c(w~u-bj+wgu.)+Hw7+wl+ 1-c w4 
KS ( > 1 . 

u 
w3*. + &$W7 

W4 + EeW7 

(37) 

wls+asw7 
(wl + w7)u + c(w{bj+ w,n) 

Again, each additional species s involves an additional add in forming wl, an addi- 
tional add and multiply in forming the first component of R W, and an additional 
add and multiply in forming the third component of R W. Similarly, each additional 
species s’ that contains If, involves an additional add in forming w3, and an addi- 
tional add and multiply in forming the fourth component of R W. Thus, also in this 
case the addition of new species to the system involves very few additional opera- 
tions. On some occasions, a matrix of the form RD(f(L,)) R-’ may be needed, 
where D is a diagonal matrix whose elements are function of the eigenvalues. One 
should never form R and R-’ individually and then perform the matrix multiplica- 
tions. The aforementioned techniques should also be applied in this case. 

In diagonal algorithms with operator splitting, one needs to form the operator 
Ri’R,, where the subscript 1 refers to a surface with unit normal n, and a set of 
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basis vectors b,,, while the subscript k refers to a surface with unit normal nk and 
a set of reciprocal basis vectors b i. From Eqs. (28) and (31) one obtains the matrix 

R; ‘R, = 

-Jsr 0 0 0 0 0 - 
0 bi,.bjl 0 0 b’,.n, -b’,.n, 
0 0 d,.,, 0 0 0 
0 0 0 1 0 0 
0 ink. b, 0 0 i(l +n,.n,) $(l-n,.n,) 

-0 - in,. bi, 0 0 $(1-n,.+) $(l +n,.n,)_ 

(38) 

Note that entries involve only the grid geometry and are independent of the physi- 
cal flow variables. Therefore the presence of chemical or thermal nonequilibrium 
does not require any additional work in operating with the matrix Rk’R, on an 
algebraic vector. 

GENERALIZED STEGER-WARMING FLUX-VECTOR SPLITTING 

If Ju’J 2 c, it follows from Eq. (25) that the eigenvalues of A are all of one sign, 
thus allowing upwind differencing to be simply implemented. If lu’l CC, the eigen- 
values of A are of mixed sign. In flux-vector splitting methods, the flux F,, is written 
as 

F,=F,+ +F;, (39) 

so that the split-flux Jacobian operators A * satisfying dF: = A + dU have the 
property that &(A*) 20 for all i. (In practice, one can permit some &(A*) SO if 
they are sufficiently small in magnitude.) 

Since the homogeneity property Eq. (24) is valid, the two ways of obtaining 
Steger-Warming flux-vector splitting for a perfect gas can be easily extended here. 
One way, the so called “eigenvalue splitting” [2, 20, 211, is to expand F,, as 

f’n= i Fni, (4) 
i= 1 

where each Fni is associated with the distinct eigenvalues Ai. One can readily obtain 
the expressions 

P* 
PU 

P _- 
Y-l 

8:s 
ee 

(41) 
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where 
2 e Wa) 

=Ic+l. (42b) 

The generalization of Steger-Warming flux-vector splitting is obtained by letting 
F,' be the sum of those Fni associated with 12 0. For -c < u’ < 0 we therefore have 

F,' =Fn2 and F,- =F,,,+F,,, (43) 

while for 0 < u’ < c, 

F,+=F,,,+F,, and F;=F Il3. (4) 

The other way, the so called “plus-minus” splitting, follows the original derivation 
of Steger and Warming [S] for the perfect gas. One can express the eigenvalue R, 
as 

where 

(45b) 

Using the homogeneity property and applying the similarity transformation, one 
obtains 

F,+=RA+R-'U and F,-=RA-R-W, (46) 

where A+ and n - have the diagonal elements A+ and A-, respectively. Both 
approaches give identical results. While one cannot prove rigorously for the non- 
equilibrium case that all the eigenvalues of A * have the appropriate sign, this has 
been shown [20] to be true for equilibrium flow of a diatomic gas with vibrational 
excitation. It is reasonable to assume that this condition will be approximately 
satisfied for practical nonequilibrium flows. Furthermore, the numerical stability 
depends also on other conditions. 

Due to the fact that A’ are discontinuous when li changes sign, “glitches” or 
oscillations have been observed at sonic points, stagnation points, and shocks in 
many perfect gas applications. There are many techniques which have been 
reported in the literature to overcome such phenomena. For example, Steger and 
Warming [S] suggested adding small blending terms to A:. This yields a smooth 
sonic transition. Anderson et al. [22] indicated that by using the MUSCL type 
differencing [23] one can obtain a smooth sonic transition and stable shock 
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structure. In addition, Buning [21] and Ying [24] utilized a proper “transition 
operator” so that the sonic glitches and shock oscillations can be avoided. All these 
techniques can be easily applied to the nonequilibrium flow cases. 

GENERALIZED VAN LEER FLUX-VECTOR SPLITTING 

Van Leer [6] constructed a different type of flux-vector splitting for a perfect gas 
in terms of polynomials of u’ whose A * are continuous and have one zero eigen- 
value. This results in a sharper capture of transonic shocks. The generalization for 
a nonequilibrium flow is similar to that derived previously for an equilibrium flow 
[2,20]. For Iu’( < c, the continuity conditions necessitate a factor (u’ + c)* in the 
formulas for F’. Using the fact that the critical values of u’ are + c, one can easily 
demonstrate that for any j(u’) that is either an even or odd function of u’, 

f+(d) = +f-( -u’) if f(u’)= &f(-u’). (47) 

As a function of u’, all components of F(U) can be represented by at most the cubic 
polynomials 

f(d) = a, + $24’ + u*zd* + u3ur3. (48) 

The lowest order polynomials for f * (u’) satisfying Eqs. (39) and (47), as well as 
the continuity conditions at lu’l = c can then be expressed as 

where 

and 

% ao’=~f(a,-C*a,) (SOa) 

a: =2ca,+ a*-% 
( > c* * (5Ob) 

Using Eqs. (48)-(50), one readily obtains the relations 

(51) 

(52) 

(53) 

M’ = +p’,c)*, 

Ej’ = * 2 (24’ ) c)2, 

E” = f 5 (u’ + c)*, 
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and 

p + = + P(U’ f cl2 - 4c [ 
u-d(rr’T2c)o . 1 (54) 

One can similarly obtain a two term expansion for E*. But this could not reduce 
to van Leer’s solution for a perfect gas where A* has one zero eigenvalue. 
However, the function f (u’ + c)* (u’ - c)’ satisfies the continuity conditions at 
U’ = fc, and such a term can be added to E* without affecting E(U). For a perfect 
gas, there is only one species, and y is a constant. The zero eigenvalue condition 
results if E* =f(M*, P*, n, a,). Guided by the form of Eq. (54), we express the 
additive function in such a way that E* can be written as 

- 7 (24’ T 2c) + l)p(u’ T c)’ 1 ) (55) 

where $ is an arbitrary parameter that is independent of the arbitrary constant in 
the definition of r,. For a perfect gas, van Leer’s condition results if $ = 0. It is 
shown in Ref. [20] that II/ = 0 is also a reasonable assumption for an equilibrium 
real gas. For the general nonequilibrium case, it is also simplest to take $ = 0. 
Again, one cannot prove rigorously that all the eigenvalues of A * have the 
appropriate sign, but it is reasonable that this is approximately true, and one of the 
eigenvalues will be close to zero. 

GENERALIZED ROE'S APPROXIMATE RIEMANN SOLVER 

Among the various approximate Riemann solvers, the most common one uses 
the Roe average because of its simplicity and its ability to satisfy the jump condi- 
tions across discontinuities exactly. The derivation in Ref. [7] for a perfect gas 
employed parameter vectors. To obtain a generalization for a nonequilibrium flow, 
we use a different, more direct approach, which is similar to that derived previously 
for equilibrium flow [2,25]. 

In approximate Riemann solvers based on local linearization, the flux at a surface 
separating two states UL and U, is based on the eigenvalues and eigenvectors of 
some average A. The optimum choice for A is one satisfying 

AF,=AAU, (56) 

where A(. ) = (. )R - ( . )L. This choice of d captures discontinuities exactly. One way 
of obtaining 2 is to seek an average state 0, such that 

A=A(O). (57) 

581/83/2-10 
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The notation 0 implies only those variables that appear explicitly in Eq. (57). Such 
a state is known as a Roe-averaged state, and was derived by Roe for a perfect gas. 
The generalization to a nonequilibrium flow is obtained by substituting Eqs. (14), 
(15), (23), and (57) into Eq. (56) with n and u, fixed at the surface. In general, uL, 
uR, and n are arbitrary, independent vectors. We can therefore expand ii as 

u=a,u,+a,u,+a,n. (58) 

The independence of uL and uR and n also implies the independence of the dot 
products uL.u,-, uL.uR, uR.uR, uLen, and uR . n. After substituting Eq. (58) into 
the momentum component of Eq. (56), and equating coefficients of independent 
quantities, one readily establishes that 

JPL 
aL=&L+JLT 

W-4 

JPR a,=l-a,=&+--&? (59b) 

a,=o. (59c) 

Therefore Eq. (58) becomes 

u=a,u,+a,u,. (60) 

This is the identical relation derived by Roe for a perfect gas. It satisfies all the 
terms involving the velocity. The remaining terms in the equation result in the new 
condition 

c 2, Ap, + 12 AZ’ + ?- AZ’ = Ap, (61) 

where AZ’ is obtained from the jump of the conservative variables using Eq. (8). 
This is just the discrete form of Eq. (18), averaged between the two states. This 
condition is automatically satisfied for a perfect gas. Substituting Eq. (60) into the 
first, fourth, and fifth components of Eq. (56), one obtains the relations 

Es=aL%L+aR%Ry (62) 

& aLEtrL + aREffR, (63) 

Ee=aLEeL+aREeR. (64) 

The third component of Eq. (56) results in the additional relation 

R=a,H,+a,H,, (65) 
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which is also true for a perfect gas. From the definition of H, Eqs. (60) and (65) 
can be combined to define a Roe-averaged specific enthalpy as 

h=a,h,+a,h,+ia,a,Au.Au. (66) 

Note that h could lie outside the range given by h, and hR if the magnitude of Au 
is sufficiently large. The Roe-averaged sound speed is given by Eq. (26a) as 

For an arbitrary nonequilibrium flow, Eq. (61) provides only one relation for the 
variables X,, r?, and 2. We thus have the paradoxical situation that not only does 
a Roe average exist for a nonequilibrium flow, its precise value is not uniquely 
delined. For the special case in which L and R are precisely those that satisfy the 
jump conditions across a discontinuity, Eqs. (59) through (67) are consistent with 
the exact Riemann solver, even though j,, 6, and 2 are not uniquely defined. For 
a gas dynamic shock wave, which necessitates the conditions Act, = Asf. = As’ = 0, 
one obtains [25] 

a2h +a2,h, h= = L 
a2,+aZ, 

(68) 

and 

AP 
F2=&* 

The values of h and E2 as given by Eqs. (68) and (69) will in general not be 
consistent with Eqs. (13b) and (26a). 

There are two approaches to obtain unique values of X,, K, and 2. In one 
approach, average temperatures are defined which are then substituted into 
Eqs. (19) and (20). The other approach is based on thermodynamic states L and R, 
and does not attempt to define an average thermodynamic state. In the first 
approach one can also distinguish between those that employ h giving by Eq. (66), 
and those that do not. Since h depends on the velocity uL and uR, the resulting 
values of X,, Ic, and 2 will also depend on these velocities. 

In the first approach, one defines 2 in terms of cl, and Te using Eq. (12a) and 
solves for Te using the Roe conditions Eqs. (62) and (64). 2 and 1, are then 
obtained from Eqs. (19b) and (20b). If we do not use h, Eqs. (19a) and (20a) can 
be considered as parametric definitions of a curve in the x,, - rc space. A unique 
solution for xsr and K is obtained if the curve has one intersection with the hyper- 
plane defined by Eq. (61). Unfortunately, there may be cases where there is no 
intersection, or possibly multiple intersections. On the other hand, one can also 
obtain T from h using Eq. (13b). The resulting unique values of xs, and K derived 
from Eqs. (19a) and (20a) will not, in general, satisfy Eq. (61). 
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The second approach is an extension of the method described in Ref. [25]. Equa- 
tions (9a) and (19a) implicitly define the function rc(p,,, Z’). One similarly defines 
rce(pS, I?) from Eqs. (9b) and (19b), and the functions x,(p,, P, 8’) from Eqs. (9) 
and (20). The straight line path between states L and R in the p, - I’ - 1’ space are 
defined parametrically by 

P,(T) = PSL + t APS, VW 

Z’(t) = 1; + T AZ’, (7Ob) 

1’( 5) = e; + ? Al’, (7Oc) 

where the parameter r is chosen so that zL = 0 and rR = 1. The integrated averages 

(71b) 
p= I ; K~[~~(T), P(T)] dT 

satisfy Eq. (61) exactly. 
The use of Eqs. (71) is not practical, so that some approximate quadratures are 

required. The resulting values of xS, K, and K~ will also not satisfy Eq. (61) exactly. 
Let f,, rZ, and 12’ define either approximations to Eq. (71) or the values derived 
from 15 in the first approach. One then requires values of ;C,, K, and 2 satisfying 
Eq. (61) which are closest to f,, Iz, and 12’. This can be formulated geometrically as 
projecting the point f,, 12, and li-’ onto the hyperplane defined by Eq. (61). But in 
order for the Roe-averaged quantities to be independent of the arbitrary constant 
in the definition of E,, one must first recast the problem so that geometric rela- 
tionships will not be affected by the choice of this constant. This can be accom- 
plished if one first divides Eq. (61) by 3. The orientation of the hyperplane in the 
space defined by the variables IS/C, l/r?, and p/R is now uniquely defined by states 
L and R. A further scale factor 8 with the dimension of 2, must be introduced, since 
the 1, are not dimensionless. The final relations can be written as 

_ Df,+ti2 Ap,6p 
“= D-Ap6p ’ 

012 
K=D-Ap8p’ 

(72a) 

Wb) 

(72~) 
p DR’ + Al’ Sp 
K = D-Ap6p ’ 
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where 

6p=Ap-C~,Ap,-~Ae’-R’Al’, 
s 

D = x(6 ApJ2 + (AP)~ + (AZ’)2. 
s 

(73) 

(74) 

A natural choice for the scale factor d is 

(j=p. 

The simplest approximation to Eqs. (71) is the trapezoidal rule 

(75) 

((-j=(.)L+(*)R 
2 ’ (76) 

although other approximations, such as midpoint rule or Simpson’s rule, can be 
used. Note that the magnitude of the error Sp using Eq. (76) is a function of the 
nonconvexity of the variables xs, K, and ~~ between the two states. On the other 
hand, the magnitude of Sp derived from h is also a function of Au. 

An important quantity in the approximate Riemann solver is the column vector 
R-’ AU. Its components are the jumps in the characteristic variables. While the 
above relations are all that are required to construct a Riemann solver using Roe’s 
linearization, an additional algebraic simplicity can be achieved by expressing 
differences in conservative variables in terms of differences in primitive variables. If 
one formally defines 

P’JZX 

the expression can be written more simply as 

(77) 

Ap, - 5, ApIE 
jjb’. Au/c 

R-‘AU= 
AC:. - z ApIt 

[ 1 AZ’ - i? Ap/E’ ’ 
;(ApfE’ + pn. Au/E) 
f ( Ap/F2 - p n . A u/E) 

SPECIAL CASES 

(78) 

The results presented so far are for the most general case of nonequilibrium flow. 
There are a number of special cases, which can be derived from the general case by 
deleting one or several equations, or modifying some of the terms in the equations. 
These will be detailed below. 
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We first consider the cases relating to the treatment of thermal nonequilibrium. 
One such case occurs when I? = 0, but I$ # 0. In practice, this would only occur if 
there were no ionization. Then s and Y would equal s’ and r’ in all the equations, 
and pe, G, I?, and their differentials would be set equal to zero in all the equations 
in which they appear. In the algebraic vectors and matrices, the fourth row would 
be absent in Eqs. (27), (29), (31), (34), (35) (38), and (78), while the fifth row 
would be absent in Eqs. (14), (15), (23), (28), (32), (37), and (41). Similarly, one 
would eliminate the fourth column in Eqs. (27), (28), and (38), and the fifth column 
in Eqs. (23), (29), (30), and (31). Note that it is possible to have nonequilibrium 
resulting from internal structure alone even if there is only one chemical species 
present. 

The other special case of thermal nonequilibrium occurs when $f, = 0 and g # 0. 
In practice, this would only occur with non-negligible ionization, so that pe #O. 
Under these assumptions, the nonequilibrium part of E,, i”t would all be characterized 
by T,. For this case, all I$ and their differentials would be set equal to zero in all 
the equations in which they occur. In the algebraic vectors and matrices, the third 
row would be absent in Eqs. (27), (29), (31), (34), (35), (38), and (78), while the 
fourth row would be absent in Eqs. (14), (15), (23), (28), (32), (37), and (41). 
Similarly, one would eliminate the third column in Eqs. (27), (28), and (38), and 
the fourth column in Eqs. (23), (29), (30), and (3 1). 

Both of the above cases can be combined if all the internal energy 1, is at equi- 
librium with the translational temperature T, and we only have chemical non- 
equilibrium. Then, gf,, P, and their differentials would be absent in all the equa- 
tions. Since any free electrons would have the temperature T, the distinction 
between the heavy particles and the free electrons is no longer valid. Thus s’ would 
be replaced by s in all the relations, and terms involving T, would be absent in 
Eqs. (4), (13b), and (16). Both sets of rows and columns listed in the previous two 
paragraphs would be deleted from their respective algebraic vectors and matrices. 

We next consider the cases relating to the treatment of chemical nonequilibrium. 
There are two cases where pe is not present as a conservative variable in the delini- 
tion of U. One occurs when we assume that charge neutrality exists locally at every 
point. In terms of the species ionic valence Z,., one can express the free electron 
density as 

Equation (79) is used in evaluating Eqs. (4), (9b), 
Equation (10) can be written as 

(lo), (12a), (13b), and (19b). 

(79) 

P = c 8S,Pd? (80) 

where 

p,,El++ 

e 
(81) 
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From Eq. (11) it follows that 

1 psfu,. = 1. (82) 

The major change in the equations is to replace s and r by s’ and r’ in Eqs. (14), 
(15), (18), and every equation starting with Eq. (21). It is also necessary to replace 
Eq. (20a) by 

xsr z R,.( T + Z,. T,) - ICE:, - P(E:. -I- aRs, Z,. 7’,). (83) 

For most engineering purposes, one can take /?,, x 1, since R,.Z,/R, 6 1. If this 
small term is not neglected, then the factor /I,, must appear in a number of terms. 
This results from expressing dp and du’ in terms of the differentials of the conser- 
vative variables. The term u . u in Eqs. (22) and (30) must be multiplied by /I,,. The 
following terms must be also multiplied by /ITS: all the terms in the first column of 
A in Eq. (23) except the U’ in the first row and the x+ in the second and third rows; 
the terms involving u in the first column of R in Eq. (28); all the terms involving 
u and U, in the first column of R-’ in Eq. (29) and the second matrix of Eq. (31). 
In addition, Eqs. (33a) and (36a) must be replaced by 

Ul = c Pdb,, 

Wl =C PS’Wld. 635) 
s’ 

The other case in which pe is not a conservative variable is in the absence of 
ionization, where p, = 0. This can be considered as a specialization of the previous 
case to Z,. = 0. It follows from Eq. (81) that /I,, = 1 rigorously, so that individual 
terms need not be modified. The main difference is that we must also take I? = 0, 
with the accompanying changes described earlier. 

There are also cases which involve only one conservation equation of mass. The 
subscripts S, r, s’, and r’ are then absent. One such case, described earlier, is thermal 
nonequilibrium due to the internal structure for a gas consisting of a single species. 
A more important case is that of a mixture in thermodynamic equilibrium, for 
which ri= P = 0. Strictly speaking, the flow can not be in truly thermodynamic 
equilibrium unless the flow is uniform. Nevertheless, under the assumption of local 
equilibrium, all the thermodynamic variables can be determined from the process of 
maximization of the irreversible entropy. Thus one can replace the species density 
equations by a single global density equation. All the results for this case have been 
presented by the authors in an earlier paper [Z]. However, one can also deduce the 
results from the general forms presented here if one formally replaces a by 1. All the 
relations are still valid, except that the equation of state is given by 

P = Ph a (86) 
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and Eqs. (19) and (20) are replaced by 

ap 
K= K 0 

ap 
x= ap b’ ( > 

(87) 

(88) 

The other change is that Eqs. (24), (26b), and (42b) are no longer valid. The equa- 
tion of state and the pressure derivatives, Eqs. (86)-(88), can be obtained from 
Ref. [ 11. Similarly, for the perfect gas case, one needs to replace Eqs. (86)-(88) by 

p=lcz, (89) 

u = const, (90) 

x = 0. (91) 

As one can see, the main difference in the equations for nonequilibrium, equi- 
librium, and perfect gas flows is in the expressions for the pressure and its 
derivatives. The difference for l-dimensional, 2-dimensional, or 3-dimensional flows 
is just the number of components in the vectors II, m, n, b,., and I#. Thus one can 
easily build a universal computer code which does nonequilibrium, equilibrium, and 
perfect gas flow computations in either one, two, or three dimensions. 

CONCLUSIONS 

A thermodynamic model has been established for the most general thermal and 
chemical nonequilibrium flow of an arbitrary gas. Extensions of modern CFD 
techniques to general, nonequilibrium flows have been obtained. The results have 
been presented in a form that reduces 
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